DEFENSA DE TRABAJO ESPECIAL DE LA LICENCIATURA EN MATEMÁTICA | CAMILLA MOLINA
Director: Dr. Jorge Lauret
Lugar: meet.google.com/ssp-qpoy-ifr
Resumen: Una ecuación especialmente sofisticada para evolucionar variedades casi-Kähler es el flujo de curvatura simpléctico, introducido por Streets-Tian. Los puntos fijos de este flujo, que reciben el nombre de estructuras estáticas, son objetos de gran interés y han presentado dificultades en su estudio. En dimensión 4, Streets-Tian y Kelleher probaron que estas estructuras presentan ciertas condiciones de rigidez. En este trabajo se muestra que a partir de dimensión 6 esas propiedades de rigidez ya no son válidas, y se dan los primeros ejemplos de estructuras estáticas que no son ni Kähler ni Einstein.